43 research outputs found

    Functional roles of synaptic inhibition in auditory temporal processing

    Get PDF

    Interaural time difference processing in the mammalian medial superior olive

    Get PDF
    The dominant cue for localization of low-frequency sounds are microsecond differences in the time-of-arrival of sounds at the two ears [interaural time difference (ITD)]. In mammals, ITD sensitivity is established in the medial superior olive (MSO) by coincidence detection of excitatory inputs from both ears. Hence the relative delay of the binaural inputs is crucial for adjusting ITD sensitivity in MSO cells. How these delays are constructed is, however, still unknown. Specifically, the question of whether inhibitory inputs are involved in timing the net excitation in MSO cells, and if so how, is controversial. These inhibitory inputs derive from the nuclei of the trapezoid body, which have physiological and structural specializations for high-fidelity temporal transmission, raising the possibility that well timed inhibition is involved in tuning ITD sensitivity. Here, we present physiological and pharmacological data from in vivo extracellular MSO recordings in anesthetized gerbils. Reversible blockade of synaptic inhibition by iontophoretic application of the glycine antagonist strychnine increased firing rates and significantly shifted ITD sensitivity of MSO neurons. This indicates that glycinergic inhibition plays a major role in tuning the delays of binaural excitation. We also tonically applied glycine, which lowered firing rates but also shifted ITD sensitivity in a way analogous to strychnine. Hence tonic glycine application experimentally decoupled the effect of inhibition from the timing of its inputs. We conclude that, for proper ITD processing, not only is inhibition necessary, but it must also be precisely timed

    The natural history of sound localization in mammals story of neuronal inhibition

    Get PDF
    Our concepts of sound localization in the vertebrate brain are widely based on the general assumption that both the ability to detect air-borne sounds and the neuronal processing are homologous in archosaurs (present day crocodiles and birds) and mammals. Yet studies repeatedly report conflicting results on the neuronal circuits and mechanisms, in particular the role of inhibition, as well as the coding strategies between avian and mammalian model systems. Here we argue that mammalian and avian phylogeny of spatial hearing is characterized by a convergent evolution of hearing air-borne sounds rather than by homology. In particular, the different evolutionary origins of tympanic ears and the different availability of binaural cues in early mammals and archosaurs imposed distinct constraints on the respective binaural processing mechanisms. The role of synaptic inhibition in generating binaural spatial sensitivity in mammals is highlighted, as it reveals a unifying principle of mammalian circuit design for encoding sound position. Together, we combine evolutionary, anatomical and physiological arguments for making a clear distinction between mammalian processing mechanisms and coding strategies and those of archosaurs. We emphasize that a consideration of the convergent nature of neuronal mechanisms will significantly increase the explanatory power of studies of spatial processing in both mammals and birds

    A novel concept for dynamic adjustment of auditory space

    Get PDF
    Traditionally, the auditory system is thought to serve reliable sound localization. Stimulus-history driven feedback circuits in the early binaural pathway, however, contradict this canonical concept and raise questions about their functional significance. Here we show that stimulus-history dependent changes in absolute space perception are poorly captured by the traditional labeled-line and hemispheric-difference models of auditory space coding. We therefore developed a new decoding model incorporating recent electrophysiological findings in which sound location is initially computed in both brain hemispheres independently and combined to yield a hemispherically balanced code. This model closely captures the observed absolute localization errors caused by stimulus history, and furthermore predicts a selective dilation and compression of perceptional space. These model predictions are confirmed by improvement and degradation of spatial resolution in human listeners. Thus, dynamic perception of auditory space facilitates focal sound source segregation at the expense of absolute sound localization, questioning existing concepts of spatial hearing

    Source identity shapes spatial preference in primary auditory cortex during active navigation

    Get PDF
    Information about the position of sensory objects and identifying their concurrent behavioral relevance is vital to navigate the environment. In the auditory system, spatial information is computed in the brain based on the position of the sound source relative to the observer and thus assumed to be egocentric throughout the auditory pathway. This assumption is largely based on studies conducted in either anesthetized or head-fixed and passively listening animals, thus lacking self-motion and selective listening. Yet these factors are fundamental components of natural sensing1 that may crucially impact the nature of spatial coding and sensory object representation.2 How individual objects are neuronally represented during unrestricted self-motion and active sensing remains mostly unexplored. Here, we trained gerbils on a behavioral foraging paradigm that required localization and identification of sound sources during free navigation. Chronic tetrode recordings in primary auditory cortex during task performance revealed previously unreported sensory object representations. Strikingly, the egocentric angle preference of the majority of spatially sensitive neurons changed significantly depending on the task-specific identity (outcome association) of the sound source. Spatial tuning also exhibited large temporal complexity. Moreover, we encountered egocentrically untuned neurons whose response magnitude differed between source identities. Using a neural network decoder, we show that, together, these neuronal response ensembles provide spatiotemporally co-existent information about both the egocentric location and the identity of individual sensory objects during self-motion, revealing a novel cortical computation principle for naturalistic sensing

    Inhibiting the inhibition

    Get PDF
    The precedence effect describes the phenomenon whereby echoes are spatially fused to the location of an initial sound by selectively suppressing the directional information of lagging sounds (echo suppression). Echo suppression is a prerequisite for faithful sound localization in natural environments but can break down depending on the behavioral context. To date, the neural mechanisms that suppress echo directional information without suppressing the perception of echoes themselves are not understood. We performed in vivo recordings in Mongolian gerbils of neurons of the dorsal nucleus of the lateral lemniscus (DNLL), a GABAergic brainstem nucleus that targets the auditory midbrain, and show that these DNLL neurons exhibit inhibition that persists tens of milliseconds beyond the stimulus offset, so-called persistent inhibition (PI). Using in vitro recordings, we demonstrate that PI stems from GABAergic projections from the opposite DNLL. Furthermore, these recordings show that PI is attributable to intrinsic features of this GABAergic innervation. Implementation of these physiological findings into a neuronal model of the auditory brainstem demonstrates that, on a circuit level, PI creates an enhancement of responsiveness to lagging sounds in auditory midbrain cells. Moreover, the model revealed that such response enhancement is a sufficient cue for an ideal observer to identify echoes and to exhibit echo suppression, which agrees closely with the percepts of human subjects

    An Active Sensing Paradigm for Studying Human Auditory Perception

    Get PDF
    Our perception is based on active sensing, i.e., the relationship between self-motion and resulting changes to sensory inputs. Yet, traditional experimental paradigms are characterized by delayed reactions to a predetermined stimulus sequence. To increase the engagement of subjects and potentially provide richer behavioral responses, we developed Sensory Island Task for humans (SITh), a freely-moving search paradigm to study auditory perception. In SITh, subjects navigate an arena in search of an auditory target, relying solely on changes in the presented stimulus frequency, which is controlled by closed-loop position tracking. A “target frequency” was played when subjects entered a circular sub-area of the arena, the “island”, while different frequencies were presented outside the island. Island locations were randomized across trials, making stimulus frequency the only informative cue for task completion. Two versions of SITh were studied: binary discrimination, and gradual change of the stimulus frequency. The latter version allowed determining frequency discrimination thresholds based on the subjects’ report of the perceived island location (i.e., target frequency). Surprisingly, subjects exhibited similar thresholds as reported in traditional “stationary” forced-choice experiments after performing only 30 trials, highlighting the intuitive nature of SITh. Notably, subjects spontaneously employed a small variety of stereotypical search patterns, and their usage proportions varied between task versions. Moreover, frequency discrimination performance depended on the search pattern used. Overall, we demonstrate that the use of an ecologically driven paradigm is able to reproduce established findings while simultaneously providing rich behavioral data for the description of sensory ethology

    Cooperative population coding facilitates efficient sound-source separability by adaptation to input statistics

    Get PDF
    Our sensory environment changes constantly. Accordingly, neural systems continually adapt to the concurrent stimulus statistics to remain sensitive over a wide range of conditions. Such dynamic range adaptation (DRA) is assumed to increase both the effectiveness of the neuronal code and perceptual sensitivity. However, direct demonstrations of DRA-based efficient neuronal processing that also produces perceptual benefits are lacking. Here, we investigated the impact of DRA on spatial coding in the rodent brain and the perception of human listeners. Complex spatial stimulation with dynamically changing source locations elicited prominent DRA already on the initial spatial processing stage, the Lateral Superior Olive (LSO) of gerbils. Surprisingly, on the level of individual neurons, DRA diminished spatial tuning because of large response variability across trials. However, when considering single-trial population averages of multiple neurons, DRA enhanced the coding efficiency specifically for the concurrently most probable source locations. Intrinsic LSO population imaging of energy consumption combined with pharmacology revealed that a slow-acting LSO gain-control mechanism distributes activity across a group of neurons during DRA, thereby enhancing population coding efficiency. Strikingly, such "efficient cooperative coding" also improved neuronal source separability specifically for the locations that were most likely to occur. These location-specific enhancements in neuronal coding were paralleled by human listeners exhibiting a selective improvement in spatial resolution. We conclude that, contrary to canonical models of sensory encoding, the primary motive of early spatial processing is efficiency optimization of neural populations for enhanced source separability in the concurrent environment

    Sensory Island Task (SIT): A New Behavioral Paradigm to Study Sensory Perception and Neural Processing in Freely Moving Animals

    Get PDF
    A central function of sensory systems is the gathering of information about dynamic interactions with the environment during self-motion. To determine whether modulation of a sensory cue was externally caused or a result of self-motion is fundamental to perceptual invariance and requires the continuous update of sensory processing about recent movements. This process is highly context-dependent and crucial for perceptual performances such as decision-making and sensory object formation. Yet despite its fundamental ecological role, voluntary self-motion is rarely incorporated in perceptual or neurophysiological investigations of sensory processing in animals. Here, we present the Sensory Island Task (SIT), a new freely moving search paradigm to study sensory processing and perception. In SIT, animals explore an open-field arena to find a sensory target relying solely on changes in the presented stimulus, which is controlled by closed-loop position tracking in real-time. Within a few sessions, animals are trained via positive reinforcement to search for a particular area in the arena (“target island”), which triggers the presentation of the target stimulus. The location of the target island is randomized across trials, making the modulated stimulus feature the only informative cue for task completion. Animals report detection of the target stimulus by remaining within the island for a defined time (“sit-time”). Multiple “non-target” islands can be incorporated to test psychometric discrimination and identification performance. We exemplify the suitability of SIT for rodents (Mongolian gerbil, Meriones unguiculatus) and small primates (mouse lemur, Microcebus murinus) and for studying various sensory perceptual performances (auditory frequency discrimination, sound source localization, visual orientation discrimination). Furthermore, we show that pairing SIT with chronic electrophysiological recordings allows revealing neuronal signatures of sensory processing under ecologically relevant conditions during goal-oriented behavior. In conclusion, SIT represents a flexible and easily implementable behavioral paradigm for mammals that combines self-motion and natural exploratory behavior to study sensory sensitivity and decision-making and their underlying neuronal processing

    Tuning of Ranvier node and internode properties in myelinated axons to adjust action potential timing

    Get PDF
    Action potential timing is fundamental to information processing;however, its determinants are not fully understood. Here we report unexpected structural specializations in the Ranvier nodes and internodes of auditory brainstem axons involved in sound localization. Myelination properties deviated significantly from the traditionally assumed structure. Axons responding best to low-frequency sounds had a larger diameter than high-frequency axons but, surprisingly, shorter internodes. Simulations predicted that this geometry helps to adjust the conduction velocity and timing of action potentials within the circuit. Electrophysiological recordings in vitro and in vivo confirmed higher conduction velocities in low-frequency axons. Moreover, internode length decreased and Ranvier node diameter increased progressively along the distal axon segments, which simulations show was essential to ensure precisely timed depolarization of the giant calyx of Held presynaptic terminal. Thus, individual anatomical parameters of myelinated axons can be tuned to optimize pathways involved in temporal processing
    corecore